- 23 Which of the three situations given below is best modeled by an exponential function?
 - A bacteria culture doubles in size every day.
 - II. A plant grows by 1 inch every 4 days.
 - III. The population of a town declines by 5% every 3 years.
 - (1) I, only

(3) I and II

(2) II, only

- (4) I and III
- 34 A car was purchased for \$25,000. Research shows that the car has an average yearly depreciation rate of 18.5%.

Create a function that will determine the value, V(t), of the car t years after purchase.

Determine, to the nearest cent, how much the car will depreciate from year 3 to year 4.

Name	Growth and Decay Regents Questions
Alg1	Finish For Homework
14 Which situation is <i>not</i> a linear	function?
 A gym charges a members month. 	ship fee of \$10.00 down and \$10.00 per
(2) A cab company charges \$2	2.50 initially and \$3.00 per mile.
(3) A restaurant employee ear	ns \$12.50 per hour.
(4) A \$12,000 car depreciates	15% per year.

26 Caleb claims that the ordered pairs shown in the table below are from a nonlinear function.

x	f(x)
0	2
1	4
2	8
3	16

State if Caleb is correct. Explain your reasoning.

2 Jill invests \$400 in a savings bond. The value of the bond, V(x), in hundreds of dollars after x years is illustrated in the table below.

X	V(x)
0	4
1	5.4
2	7.29
3	9.84

Which equation and statement illustrate the approximate value of the bond in hundreds of dollars over time in years?

- (1) $V(x) = 4(0.65)^x$, and it grows.
- (2) $V(x) = 4(0.65)^x$, and it decays.
- (3) $V(x) = 4(1.35)^x$, and it grows.
- (4) $V(x) = 4(1.35)^x$, and it decays.
- 5 Ian is saving up to buy a new baseball glove. Every month he puts \$10 into a jar. Which type of function best models the total amount of money in the jar after a given number of months?
 - (1) linear

- (3) quadratic
- (2) exponential
- (4) square root